Table of contents

1. Product Introduction	2
1. Overview	2
2. Features	2
3. Application areas	2
2. Electrical, Mechanical and Environmental Indicators	2
1. Electrical specifications	2
2. Usage environment and parameters	3
3. Mechanical installation diagram	3
4. Enhance heat dissipation	4
3. Driver interface and wiring introduction	4
1.Interface Description	4
2. Control signal interface circuit	5
3. Control signal timing diagram	6
4.Control signal mode setting	7
5.Wiring requirements	7
4. Current, subdivision dial switch settings and parameter self-tun	ing7
1. Current setting	7
2. Quiescent current setting	8
3. Segment settings	8
5. Power supply selection	8
6. Protection function	9
1. Short circuit protection	9
2.Overvoltage protection	9
3.Undervoltage protection	9
4. Phase loss protection.	9

MINI DS556 digital two-phase stepper driver

— Product Introduction

1. Overview

MINI DS556 is the MINI version of the DS556 standard product. It is a two-phase digital stepper driver with serial port debugging function newly launched by Green IoT Technology Co., Ltd. It adopts the latest 32-bit DSP control technology and integrates MODBUS-RTU standard protocol specifications. Users can set any subdivision within 200-40000 and multiple parameters such as working mode through the host computer debugging software, which greatly enriches the practical functions of the product and can meet the application needs of most occasions.

The MINI DS556 driver adopts a servo-like control principle, integrating vector control technology, built-in micro-segmentation technology, and adaptive filtering technology, which greatly optimizes the performance of the stepper motor. It runs smoothly at low, medium and high speeds with low noise. The precise and smooth pure sine current vector control technology effectively reduces the heating of the motor.

The driving voltage range of the MINI DS556 driver is DC20~50V, and it is suitable for two-phase hybrid stepper motors with a peak current below 5.6A and an outer diameter of 42~86mm.

2. Features

•With serial port debugging function

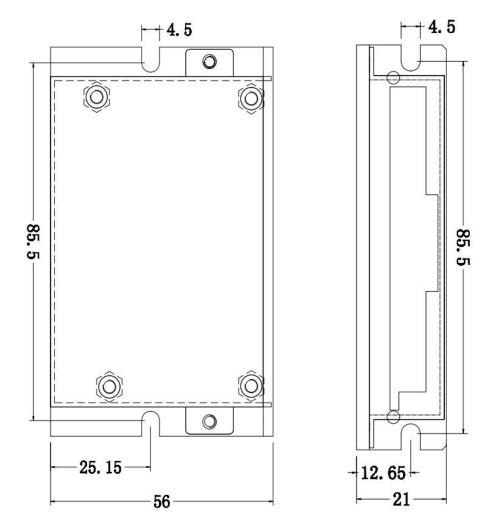
- New 32-bit DSP technology
- •Small size, easy to install •Can drive 4, 6, 8-wire two-phase stepper motor
- •Optically isolated differential signal input •Built-in micro-segmentation
- •Subdivision setting range 200-40000 •Pulse response frequency up to 200KHz (higher can be modified)
- •Current can be set arbitrarily •Precise current control greatly reduces motor heating
- •With overvoltage, undervoltage, overcurrent and other protection functions •The current is automatically halved when stationary

3. Application Areas

Suitable for various small and medium-sized automation equipment and instruments, such as: engraving machines, marking machines, cutting machines, plotters, CNC machine tools, automatic assembly equipment,

etc. It has a particularly good application effect in equipment applications where users expect low noise and high speed.

2. Electrical, Mechanical and Environmental Indicators


1. Electrical Specifications

illustrate	MINI DS556					
illustrate	Minimu Typical		Maximu	unit		
	m	Value	m			
Output Current	1.4	-	5.6	Α		
Input power	20	36	50	VDC		
voltage						
Control signal	7	10	16	mA		
input current						
Step pulse	0	-	200	KHz		
frequency						
Insulation	50			МΩ		
resistance						

2. Use environment and parameters

Cooling method		Natural cooling, fan cooling
	occasion	Do not place it near other heating equipment. Avoid dust, oil mist, corrosive gas, high humidity and strong
Usage		vibration. Flammable gas and conductive dust are prohibited.
	temperatu	0——50℃
	re	
	humidity	40-90%RH
Environme	vibration	10~55Hz/0.15mm
nt		
Storage te	mperature	-20°C~65°C

3. Mechanical installation drawing

Front installation diagram Side installation diagram Figure 1 Installation dimensions (unit: mm)

****Side installation is recommended for better heat dissipation. When designing the installation dimensions, pay attention to the terminal size and wiring!**

4. Enhanced heat dissipation

- 1) The reliable operating temperature of the driver is usually within 50°C, and the operating temperature of the motor is within 80°C;
- 2) It is recommended to select the automatic half-current mode when using, that is, when the motor stops, the current is automatically reduced by half to reduce the heating of the motor and driver;
- 3) When installing the driver, please install it sideways and allow strong air convection to form on the bottom of

the driver. If necessary, install a fan near the driver inside the machine to form air convection to assist in heat dissipation and ensure that the driver operates within a reliable operating temperature range.

3. Driver interface and wiring introduction

1. Interface Description

1) Control signal interface

name	Function			
PLS+	Pulse control signal: +5V-+24V can be driven, rising edge is effective, every time the			
	pulse changes from high to low, the motor takes a microstep. In order to reliably respond			
PLS-	to the pulse signal, the pulse width should be greater than 2µs.			
DIR+	Direction control signal: can be driven by +5V-+24V, high/low level signal. To ensure			
	reliable commutation of the motor, the direction signal should be established at least 5µ			
	s before the pulse signal. The initial running direction of the motor is related to the motor			
DIR-	wiring. Interchanging any phase winding (such as A+ and A-) can change the initial			
	running direction of the motor.			
ENA+	Enable control signal: +5V-+24V can be driven, high/low level signal. Used to enable or			
	disable the operation of the motor. When ENA+ is connected to +5V and ENA- is			
	connected to a low level, the driver will cut off the current of each phase of the motor to			
ENA-	put the motor in a free state, and the step pulse will not be responded to at this time.			
	When this function is not needed, the enable signal terminal can be left floating.			

2) Strong power interface

name	Function
GND	DC power ground
+VDC	Positive power supply, range: DC20~50V, recommended +36V
A+、A-	Motor A phase coil
B+, B-	Motor B phase coil

3) 232 communication interface

The serial communication interface of the MINI DS556 driver uses the white terminal of PH2.0-7P. It can be connected to the PC through a dedicated serial cable and a USB to TTL serial conversion tool. Do not plug and unplug it while it is powered on! On the PC side, customers can set the required parameters, such as current, subdivision, working mode, etc. For details, please refer to the upper computer software interface.

Terminal No.	symbol	name	illustrate
1	NC		Internal Use
2	NC		Internal Use
3	GND	RS232 communication	0V
4	NC		Internal Use
5	NC		Internal Use
6	TXD	RS232 transmitter	
7	RxD	RS232 Receiver	

Note: The cable connecting MINI DS556 and PC must be a dedicated cable (provided with the computer depending on the user's needs). Please confirm it before use to avoid damage.

4) Status Indicator

The green LED is the power indicator light. When the driver is powered on, the LED is always on; when the driver is powered off, the LED is off.

The red LED is a fault indicator. When a fault occurs, the indicator flashes in a cycle of 3 seconds. When the fault is eliminated by the user, the red LED goes out. The number of times the red LED flashes in 3 seconds represents different fault information. The specific relationship is shown in the following table:

Seri	Number	Red LED flashing waveform	Fault Description
al	of flashes		
num			
ber			
1	1		Overcurrent, phase short circuit or poor contact fault
2	2		Overvoltage fault (voltage>DC50V)

3	3	Undervoltage fault (voltage <dc20v)< th=""></dc20v)<>
4	5	Motor open circuit(Phase missing)

2. Control signal interface circuit

The MINI DS556 driver control signal end adopts a differential interface circuit, which is applicable to differential signals, single-ended common cathode and common anode interfaces, and has a built-in high-speed optocoupler, which has strong anti-interference ability in harsh environments. The interface circuit diagram is shown in Figure 2.

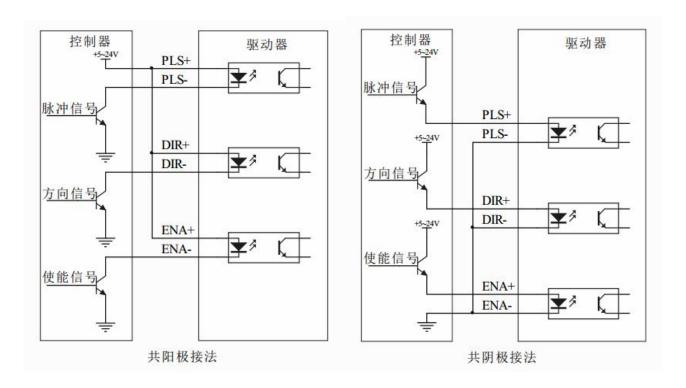


Figure 2 Input interface circuit

▶Note: MINI DS556 is a 5V-24V universal driver, so the signal control end does not need a series resistor!

3. Control signal timing diagram

In order to avoid some false actions and deviations, PLS, DIR and ENA should meet certain requirements, as shown in the following figure:

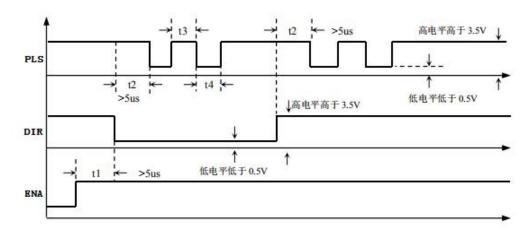


Figure 3 Control signal timing diagram

Notes:

- 1) t1: ENA (enable signal) should be at least 5ms ahead of DIR and determined to be high. In general, it is recommended that ENA+ and ENA- be left floating.
 - 2) t2: DIR determines its state high or low at least 5µs in advance of the falling edge of PLS.
 - 3) t3: The pulse width is at least 2.5µs.
 - 4) t4: Low level width is not less than 2.5µs.

4. Control signal mode setting

Pulse trigger edge selection: The rising edge or falling edge of the pulse can be set to trigger effectively through the PC software.

5. Wiring requirements

- 1) In order to prevent the driver from being interfered, it is recommended that the control signal use shielded cable, and the shield layer is short-circuited with the ground wire. Except for special requirements, the shield line of the control signal cable is grounded at one end: the host computer end of the shield line is grounded, and the driver end of the shield line is suspended. Only the same point is allowed to be grounded in the same machine. If it is not a real ground wire, there may be serious interference. In this case, the shield layer is not connected.
- 2) The pulse and direction signal lines are not allowed to be wrapped side by side with the motor lines. It is best to separate them by at least 10 cm. Otherwise, the motor noise will easily interfere with the pulse direction signals and cause inaccurate motor positioning, system instability and other faults.
- 3) If one power supply supplies multiple drives, they should be connected in parallel at the power supply. Chain

connection from one drive to another is not allowed.

- 4) It is strictly forbidden to plug or unplug the high-voltage terminals of the driver while it is powered on. When the motor is stopped, there is still a large current flowing through the coil. Plugging or unplugging the terminals while it is powered on will cause a huge instantaneous induced electromotive force that will burn out the driver.
- 5) It is strictly forbidden to connect the wire end to the terminal after tinning it, otherwise the contact resistance may increase and the terminal may be damaged by overheating.
- 6) The wiring ends must not be exposed outside the terminals to prevent accidental short circuits and damage to the driver.

四、DIP switch function setting

The MINI DS556 driver uses an 8-bit dip switch, SW1-SW3 are used to set the current; SW4 selects full current or half current lock; SW5-SW8 are used for subdivision settings. The detailed description is as follows:

SW1	SW2	SW3	SW4	SW5	SW6	SW7	SW8
Cu	ırrent setti	ng	Semi-st		Segment	settings	

1. Current setting

Output peak current	Output effective current	SW1	SW2	SW3	Current self-setting
1.4	1.0	off	off	off	When SW1, SW2, and
2.1	1.6	on	off	off	SW3 are all off, the
2.7	1.9	off	on	off	required effective current
3.2	2.3	on	on	off	value can be set through
3.8	2.7	off	off	on	the PC software. The
4.3	3.1	on	off	on	maximum value is
4.9	3.5	off	on	on	6000mA and the
5.6	4.0	on	on	on	resolution is 1mA.

2. Quiescent current setting

The static current can be set with the SW4 DIP switch. Off means the static current is set to half of the dynamic current, and on means the static current is the same as the dynamic current. In general use, SW4 should be set to off to reduce the heat of the motor and driver and improve reliability. After the pulse input stops, the

current is automatically reduced to half (the lock current percentage can also be set by the host computer software).

3. Segment settings

Steps/turn	SW5	SW6	SW7	SW8	Segment Description
200	on	on	on	on	
400	off	on	on	on	
800	on	off	on	on	
1600	off	off	on	on	
3200	on	on	off	on	
6400	off	on	off	on	ANI CIAIS CIAIS CIAIT L CIAIS
12800	on	off	off	on	When SW5, SW6, SW7, and SW8 are
3600	off	off	off	on	all off, the user can set any
1000	on	on	on	off	subdivision value from 200 to 40000
2000	off	on	on	off	through the PC software, with a resolution of 1.
4000	on	off	on	off	- resolution of 1.
5000	off	off	on	off	
8000	on	on	off	off	
10000	off	on	off	off	
20000	on	off	off	off	
7200	off	off	off	off	

五、Power supply selection

The power supply voltage can work normally within the specified range. The MINI DS556 driver is best powered by a regulated DC switching power supply. It should be noted that the output current range of the switching power supply must be set to the maximum. An unregulated DC power supply can also be used, but it should be noted that the peak value of the rectified voltage ripple should not exceed the specified maximum voltage. It is recommended that users use a DC voltage lower than the maximum voltage to avoid grid fluctuations exceeding the driver voltage operating range.

►Notice:

- 1) When wiring, pay attention to the positive and negative poles of the power supply and do not connect them in reverse;
- 2) When wiring, pay attention to the position of the power interface and do not connect it to the motor port.

 After connecting, it is best to confirm whether it is connected correctly;
 - 3) It is best to use a regulated DC switching power supply;
 - 4) When using an unregulated DC power supply, the power supply current output capacity should be

greater than 60% of the driver set current;

- 5) When using a regulated DC switching power supply, the output current of the power supply should be greater than or equal to the operating current of the driver;
- 6) To reduce costs, two or three drivers can share one power supply, but the power supply must be large enough.

六、Protection function

1. Short circuit protection

When a phase-to-phase short circuit or overcurrent occurs inside the driver, the driver red light flashes once and flashes repeatedly in a cycle of 3 seconds. At this time, the fault must be eliminated and the power must be turned on again for a reset.

2. Overvoltage protection

When the input voltage is higher than DC50V, the red light of the driver flashes twice and flashes repeatedly in a cycle of 3 seconds. At this time, the fault must be eliminated and the power must be turned on again for reset.

3. Undervoltage protection

When the input voltage is lower than DC20V, the red light of the driver flashes 3 times and flashes repeatedly in a cycle of 3 seconds. At this time, the fault must be eliminated and the power must be turned on again for reset.

4. Phase loss protection

When the power is initially turned on and the motor is out of phase, the driver red light flashes 5 times and flashes repeatedly in a 3-second cycle. At this time, the fault must be eliminated and the power must be turned on again to reset.